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Permethylyttrocene alkyl and hydrido derivatives Cp*2Y-R 
(Cp* = T -̂C5Me5; R = H, CH(SiMe3)2) are effective catalysts 
for a variety of reactions.' Previously we have found that Cp*2-
LnR (Ln = Y, La, Ce; R = CH(SiMe3)2) catalyzes, for instance, 
the oligomerization of terminal alkynes.la'2 We were interested 
in exploring yttrium-based systems with an alternative coordi­
nation environment and comparing these with the known 
chemistry. We have chosen the bidentate Ar,/V/-bis(trimethyl-
silyl)benzamidinate ligand, earlier employed by Roesky,3 Deh-
nicke4 and Edelmann,5 to develop new catalytic group 3 chemistry 
for C-C and C-H bond formation. 

Here we describe the preparation of bis(iV",/v"'-bis(trimethyl-
silyl)benzamidinate)yttrium hydride, {[C6H5C(NSiMe3)2hY-M-
HJ2, and its use as a precursor in the catalytic dimerization of 
terminal alkynes, together with the synthesis and crystal structure 
of the novel acetylide complex {[C6H5C(NSiMe3)2]2Y-jt-
C==CH}2. 

Multigram quantities of the chloride complex [C6H5C-
(NSiMe3)2]2YCl'THF (l)7a can be easily obtained by reaction 
of Li[C6H5C(NSiMe3)2]

6 with YCl3-THF35.
7b The chloride is 

an excellent precursor to new yttrium alkyl complexes.8 For 
instance, reaction of 1 with LiCH(SiMe3J2 afforded salt-free 
[C6H5C(NSiMe3)2]2YCH(SiMe3)2 (2).7b The proton-coupled 
13C NMR spectrum of 2 shows a double doublet from the methyne 
carbon at S 43.5 (' JY-c = 30 Hz, 1Jc-H = 88 Hz), which is shifted 
significantly downfield from the C-H resonance in Cp*2YCH-
(SiMe3)2 (S 25.2),9 suggesting a more electrophilic yttrium 
environment in 2. Like in Cp*2YCH(SiMe3)2 VJC-H = 84 Hz),9 

the small coupling constant for the a-carbon resonance (' JC-H -
88 Hz) indicates an agostic interaction10 of the alkyl C-H bond 
with yttrium as is expected for an electronically very unsaturated 
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compound (14 electron system at maximum). Treatment of 2 
with dihydrogen (3 atm, 40 0C) in benzene gives the very air-
sensitive hydride {[C6H5C(NSiMe3)2]2Y-/t-H}2 (3).7b The 1H 
NMR spectrum of 3 shows a triplet at 8.3 ppm (lJy-H = 27.6 
Hz), which suggests a symmetric dimeric structure in solution." 
None of the synthesized complexes (1-3) shows any dispropor-
tionation or decomposition after 24 h at 100 0C in benzene, 
demonstrating the high stability of this new class of yttrium 
compounds. 

With 3 available, we were interested in examining the reactivity 
with terminal alkynes, and making comparisons with the bis-
(permethylcylopentadienyl) analogues of yttrium, lanthanum, 
and cerium. Treatment of 3 with an excess of HO=CR (R = 
*-Bu, Ph) gives a slow but selective reaction affording the head-
to-tail coupled product H2C=C(R)O=CR (R = f-Bu, Ph).12 

However, for HO=CSiMe3, a dramatic change in regioselectivity 
takes place and catalytic dimerization to exclusively the head-
to-head coupled product fratts-R(H)C=C(H)0=CR (R = 
SiMe3) is observed.1213 By contrast, the Cp*2LnR-catalyzed 
coupling of HC==CPh and HCs=CSiMe3 gives either mixtures 
of head-to-tail and head-to-head isomers (Ln = Y) or formation 
of higher oligomers (Ln = La, Ce).2 The mechanism for this 
reaction is believed to be the same as for the catalytic dimerization 
of terminal alkynes by Cp*2LnR (Ln = Sc, Y, La, Ce).la214 

Unlike Cp*2ScMe,15 3 does not oligomerize ethyne. Treating 3 
with an excess of ethyne resulted in the formation of an acetylide.7b 

An X-ray structure determination revealed the compound to be 
{[C6H5C(NSiMe3)2]2Y-M-C==CH}2 (4), a dimer with bridging 
ethynyl groups. 4 was also prepared by treatment of 2 with ethyne 
in benzene (eq l).7b 

2[C6H5C(NSiMe3)2]2Y-R + HC==CH — 

R = CH(SiMe3)2 (2), H (3) 

{[C6H5C(NSiMe3)2]2Y-M-G==CH}2 + RH (1) 

(4) 

An ORTEP drawing of 4 is shown in Figure 1. The unit cell 
contains two crystallographically independent molecules, both 
obeying Ci symmetry, that do not differ markedly in their 
structures.16 In one molecule, two identical [C6H5C(N-
SiMe3)2]2Y—C==CH units are related to each other by a 2-fold 
axis perpendicular to the plane of the acetylide bridge. In the 
other molecule, the two yttrium atoms are on a special position 
along the 2-fold axis, with disordered acetylide fragments. 
Notable features of the nondisordered molecule will be discussed 
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Figure 1. ORTEP drawing of {[C6H5C(NSiMe3)2]2Y-n-OsCH}2 (4). 
Only one of the crystallographically independent molecules is shown with 
50% probability ellipsoids. 

here (Figure 1). 4 is formed by two distorted octahedral yttrium 
atoms, each coordinated by two chelating benzamidinate ligands 
and two bridging acetylides. Due to a frans-effect, the Y(3)-
N(5) (2.395(4) A) and Y(3)-N(8) (2.381(4) A) bond lengths 
are longer than Y(3)-N(6) (2.345(4) A) and Y(3)-N(7) (2.335(4) 
A) (trans to the acetylide). The Y(3)-C(29) (2.556(5) A) and 
Y(3)a-C(29) (2.509(5) A) bonds are longer than in Cp*2Y(ji-
C=CCMe3)2Li-THF (2.38(2) A)'7* but very similar to the Y-C 
distances in [Cp2Y-M-Me]2 (2.553(1), 2.537(9) A).17b The Y-C 
bond lengths of 4 compare well with the Ln-C distances of some 
4f element acetylide complexes, [Cp'2Ln-fi-C=CR]2 (Cp' = 
substituted cyclopentadienyl, Ln = Sm, Er) when the differences 
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in atomic radii are taken into account.18 A remarkable feature 
is that, in contrast to the Cp*2Ln (Ln = La, Ce,19a and Sml9b) 
systems, no coupling of acetylide fragments is observed. Both 
the Y(3)-C(29) and Y(3)a-C(29) bond lengths and the Y(3)-
C(29)-C(30) (98.4(5)°) and Y(3)a-C(29)-C(30) (159.8(5)°) 
angles indicate that the bridge is clearly asymmetric with a strong 
interaction of the a-carbon atom, C(29), with both yttrium centers. 
The acetylide absorption (v(C=C) 1915 cm-1) in the IR spectrum 
(cf. KC=C) (Cp3UC=CH) 2062 cm-'),20 the ]JC-H coupling 
constant for YC=CH of 218 Hz in the 13C NMR spectrum, and 
the Y(3)a-C(29)-C(30) angle of 159.8(5)° suggest rp- interaction 
of the triple-bond ir orbitals with Y(3).18a Since r interaction 
of the acetylide is expected to result in elongation of the C=C 
bond, the C(29)-C(30) bond length of 1.164(8) A, shorter than 
that in free acetylene (1.21 A), is very surprising. 

These preliminary results show that the N,N -bis(trimethyl-
silyl)benzamidinate acts as an inert spectator ligand in these 
complexes. The thermal stability and catalytic activity of 3 clearly 
demonstrate that a much more diverse chemistry is available to 
yttrium than that of cyclopentadienyl systems only. Indeed, 
exploratory experiments showed that the hydride J[C6H5C-
(NSiMe3J2] 2Y-/i-H}2 (3) also polymerizes ethene under mild 
conditions. These promising perspectives for catalytic C-H and 
C-C bond formation are currently under investigation. 
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